The Advances in Cerebral Resuscitation, Protection & Preservation from Ischemia Benjamin M. Rigor, M.D., LL.D. **Emeritus Professor & Chairman Department of Anesthesiology & Perioperative Medicine School of Medicine University of Louisville Health Sciences** Center Louisville, Kentucky, U.S.A. E-mail: <u>bmrigo01@louisville.edu or</u> bmrigorsrmd@juno.com

Disclaimer/Disclosure I am in the Speaker's Bureau of the **University of Louisville for continuing** education of physicians & other health professionals & for public information. Some of my research projects were supported by grants obtained from drug companies on a competitive/merit basis & I have no financial interests or investment in them.

The opinions expressed during this presentation are my own & do not necessarily reflect those of the University of Louisville or organized medicine (A.M.A.).

Scope of Presentation
Stages/phases of resuscitation.
Definition of terms & classification of cerebral hypoxia/ischemia.
Patho-physiology of cerebral ischemia &

- Patho-physiology of cerebral ischemia & mechanisms of neuronal destruction.
- Clinical applications of cerebral protection.
- Methods of cerebral protection with emphasis on pharmacologic & nonpharmacologic methods.
- State of the art in cerebral protection "Gold Standard" & the "Strokes".
- Summary & Conclusion.

Classification – Therapeutic Interventions

<u>Class Supporting Evidence</u> Clinical Intervention

1 At least one randomized clinical trial (RCT)

Always useful

2a Multiple studies with positive results **Useful & safe**

2b Evidence is generally but always positive Within standard of care

Intermediate

3

Inconsistent

Inconclusive

Studies confirm harm

Harmful

Definition of Terms

Anoxia (an-ok'se-ah) – Absence or lack of oxygen; reduction of oxygen in body tissue below physiologic levels.

- Hypoxia (hi-pok'se-ah) Low oxygen content or tension; deficiency of oxygen in the inspired air.
- Cerebral Ischemia (ce-re'b-ral is-ke"me-ah) Deficiency of blood in the cerebrum due to functional constriction or actual obstruction of a blood vessel.

Stroke (strok) – A syndrome characterized by a host of neurological events that have a rapid onset & that usually progress over a 24-hour period. The cause is generally attributed to an interruption of the blood flow to the brain.

CPR - Stages

- B.L.S. (Basic Life Support) The A,B,Cs of resuscitation.
- Intermediate Life Support AEDs & Advance Airway Devices (<u>Class 1</u>).
- ACLS, PALS & ATLS (Advanced Cardiac/Trauma Life Support) with emphasis on airway & circulation
 - I.V. accesses (<u>Class 1</u>).
 - Drugs cardiac, respiratory arrest & treatment of acute coronary syndrome (ACS) <u>Class 2a.</u>
- Cerebral resuscitation, protection & preservation.

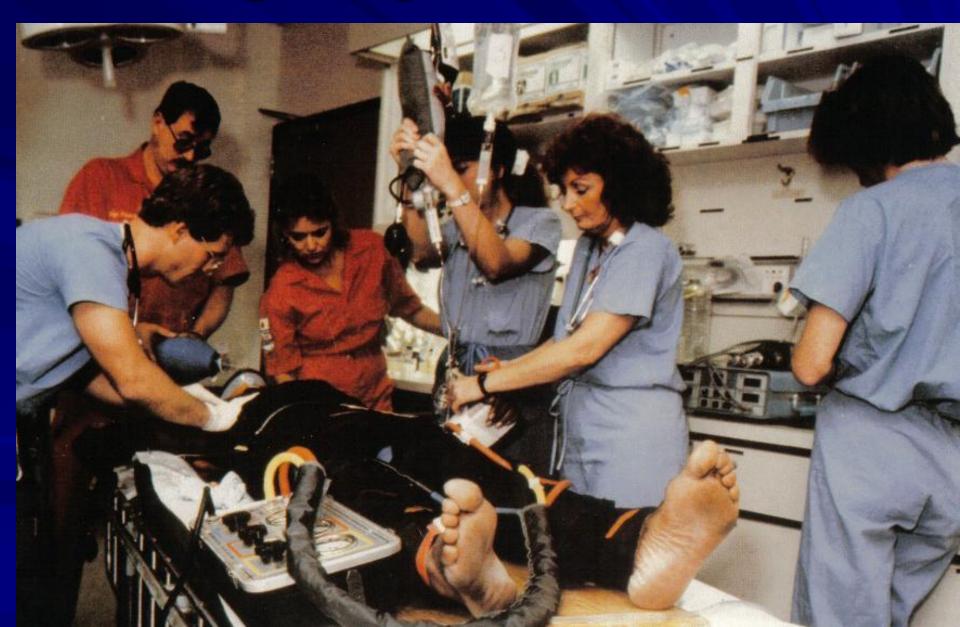
CEREBRAL ISCHEMIA and RESUSCITATION

CRC

Avital Schurr Benjamin M. Rigor

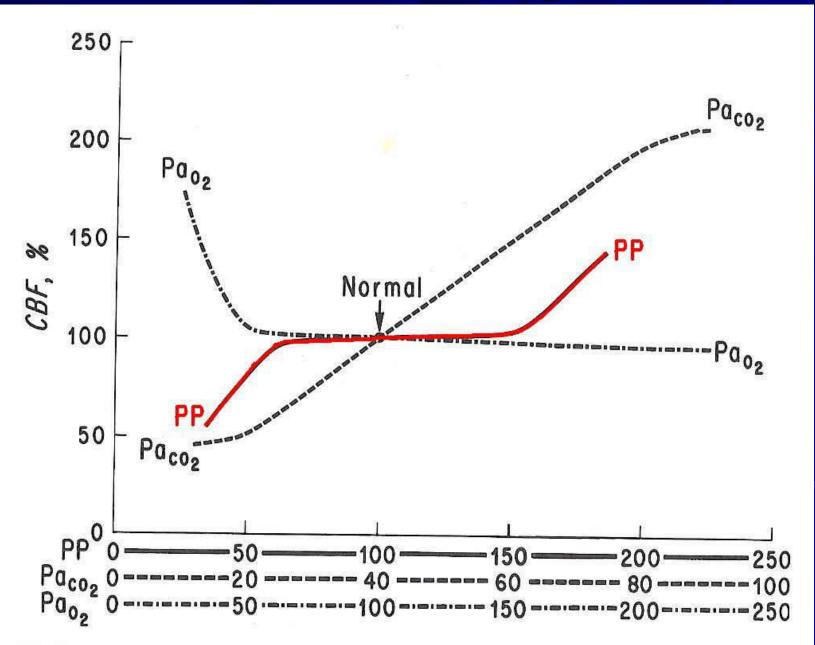
Emergency Resuscitation

University of Louisville Hospital


First First Trauma Center in the nation Make the right choice in your health care

www.uoflheaithcare.org

Emergency Resuscitation



Pathophysiology of the Brain The skull is a rigid vault. Glucose is the primary substrate for cerebral metabolism. Lactate can serve as an alternate substrate under severe anaerobic conditions (Schurr, **Rigor). Outcomes are poor with hypo**or hyperglycemia. pCO₂ is the greatest determinant of vascular caliber - \uparrow pCO₂ = cererbal vasodilatation, \downarrow intracellular pH, watch out for inverse-steal!!

Pathophysiology of the Brain Mild to moderate hypothermia, barbiturates & anesthetics - | CMRO₂ (cerebral metabolic rate). BBB abnormalities are still present after an initial insult (hypoxia, global ischemia, stroke) up to 4 - 6 wks. Hct. (hematocrit) - ↑ blood viscosity \rightarrow \downarrow cerebral blood flow – stay at 30-35% Hct.

What is the safe lower limit of cerebral autoregulation??

Cerebral Autoregulation

Causes of Tissue Hypoxia

Levels of Interference

<mark>SSUES</mark> – Cellular metabolism

Cell membrane/wall Extracellular space

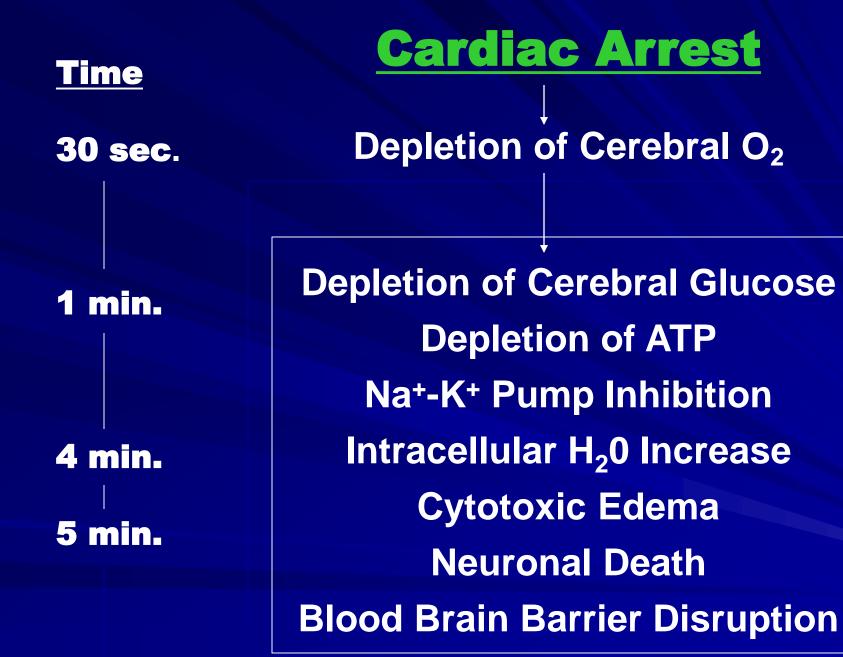
RBC Blood supply

Heart

Metabolic blockage ↑ O₂ need ↓ Cell permeability ↑ Tissue edema

Causes of O₂ Lack

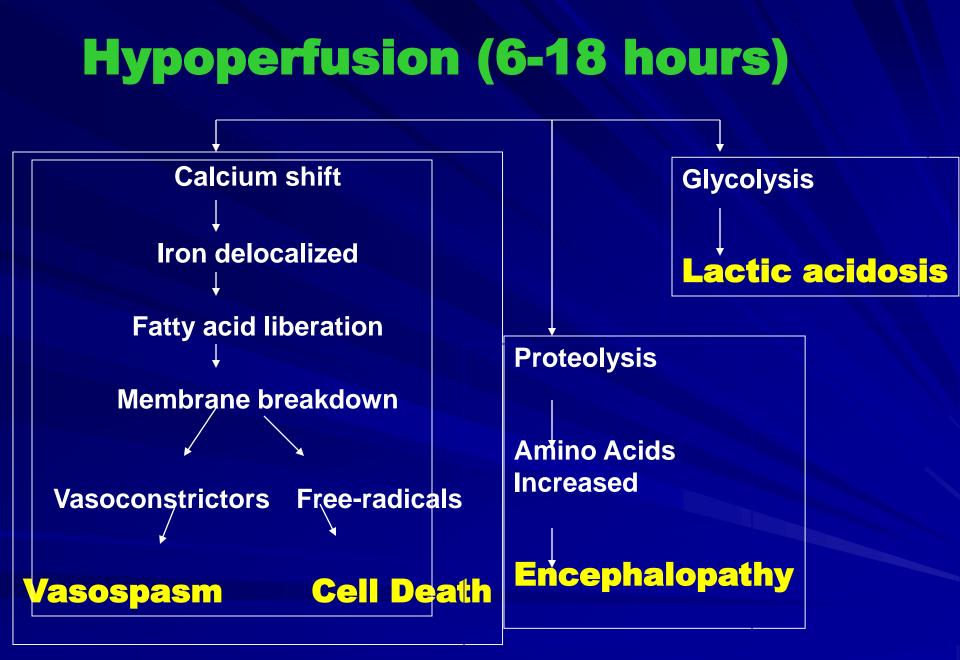
Blood loss, anemia A-V shunting, arterial occlusion Pump failure

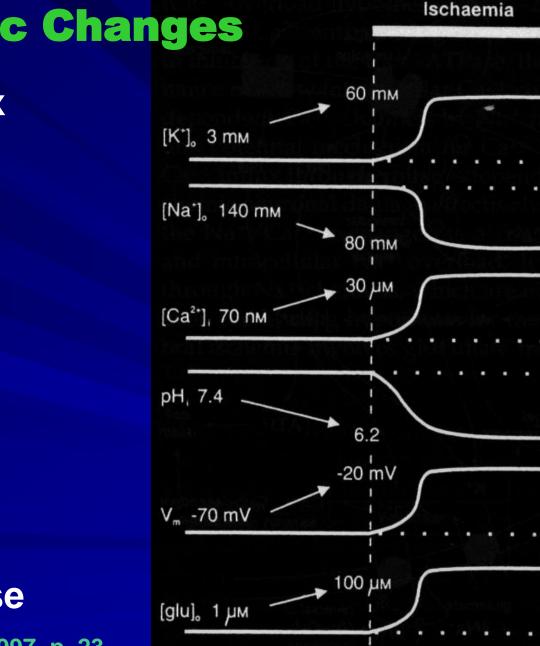

Respiratory - Alveolar membrane Lung perfusion Alveolar ventilation Inspired air

✓ Permeability
 V/Q mismatch
 Hypoventilation
 Low O₂ tension

Classification of Brain Ischemia Based on Location – 1. Global – Cardiac arrest 2. Focal (Regional) – Embolization Degree of Permanence – **1. Temporary – Shunt placement 2.** Permanent – Infarction Degree of Completeness – **1. Complete – Infarction** 2. Incomplete – ICA occlusion Combination of the Above – **Protection vs Resuscitation**

Selective Vulnerability (Based on Increasing Vulnerability) **A. Neuronal Elements:** Neurons \rightarrow Glial Cells (oligodendroglia, astrocytes, microglia) \rightarrow Blood Vessels \rightarrow Other **Syncitial Tissues (endothelial &** meningeal cells). **B. Brain Structures**: Neocortex (Lamina 3 & 5) \rightarrow Hippocampus (Sommer sector) \rightarrow Allocortex (end folium) → Caudate Nucleus & Putamen \rightarrow Cerebellum


(Purkinje cells).



Re-establishment of Flow in <20 minutes

Hyperperfusion (lasts 10-30 min)

Hypermetabolism Catecholamine Release & Synthesis Increased O₂ Consumption

Ischemic/hypoxic Changes

- potassium efflux
- sodium influx
- calcium influx
- acidosis

depolarization

glutamate release

Hemmings HC Jr Neuroprotection 1997, p. 23

Excitotoxicity, Ca²⁺ Overload and Cell Death

phospholipases

necrosis

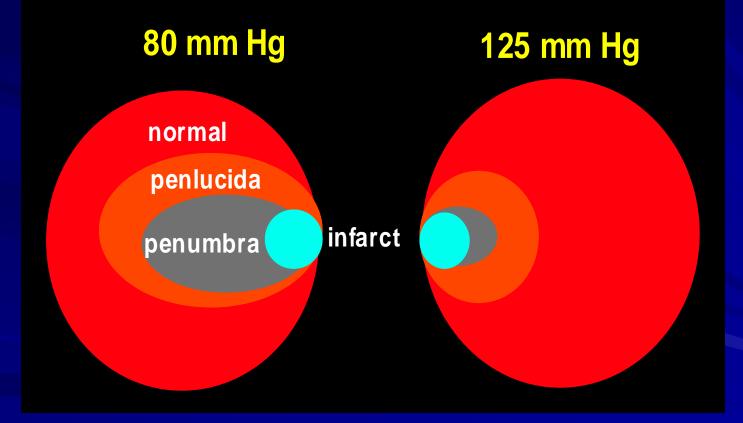
free radicals

membrane disruption

apoptotic factors inhibit expression of *bci-2* anti-death gene gene expression proteases

apoptosis

Tirilizad improves outcome of subarachnoid hemorrhage. Lanzino G et al. J Neurosurg 1999;90:1018


Neonatal Resistance CBF is 60 – 90% greater. Lower cerebral metabolic demand. Better ionic homeostasis. Brain glycogen content. \blacksquare \lor Na⁺⁺ channels. **Taurine level** $\rightarrow \downarrow$ Ca⁺⁺ influx. Glutamate levels (storage). Underdeveloped & immature neuronal elements.

Mechanisms of Cerebral Hypoxic-Ischemic Damage Acidosis due to anaerobic [↑] lactic acid. Ca++ influx & intracellular accumulation - Pump failure 1 Membrane permeability Neurotoxicity of excitatory transmitters – NMDA, AMPA, glutamate, etc. Formation of O₂ free radicals – Reperfusion & re-oxygenation of hypoxic/ischemic tissues. Mucosal damage of blood vessel, platelet aggregation, sludging & aggravation of the low- or no-flow state.

(Schurr A, Rigor BM: Hippocampus, 2:221-228, 1999)

Compromised Neuronal Viability C.P.P. (cerebral perfusion pressure) is less than 30 mmHg. ■gCBF less than 15 ml/100 <u>Gm/min</u>. **Cerebral venous pO₂ less than 20 torr.** I.C.P. (intra-cranial pressure) – >8 – 12 mm. Hg.

Controlled Hypertension May Reduce Injury

Young, W.L. Problems in Anesthesia 7(1):140, 1993

Clinical Applications

- Cardiac arrest from all causes.
- Brain preservation in cardiac & neurosurgery.
- Asphyxia & drowning (submersion).
- Traumatic brain injury (T.B.I.).
- Neonatal resuscitation & OB misadventures.
- Reye's Syndrome
- Total circulatory arrest for complex congenital heart surgery.

Surgery for giant vertebro-basilar aneuryms & A-V malformations.

Goals of Cerebral Protection Preserve functions & viability of the penumbral region. \blacksquare \downarrow Extension of neuronal damage. Preserve functions beyond the vegetative state. Oxygen consumption/metabolic demand of viable or "stunned" neuronal elements. Prevent or stop associated complications in other organ systems. Maintain homeostasis at the pre-injury level.

Clinical Endpoints Reversal of EEG patterns. Cerebral blood flow. \blacksquare \downarrow Size of the infarct. $\blacksquare \lor Neurologic deficit(s).$ Improvement of behavioral patterns. Survival beyond vegetative state

Neurologic deficit/ injury correlates more with the anatomical location rather than the size of the infarct!!

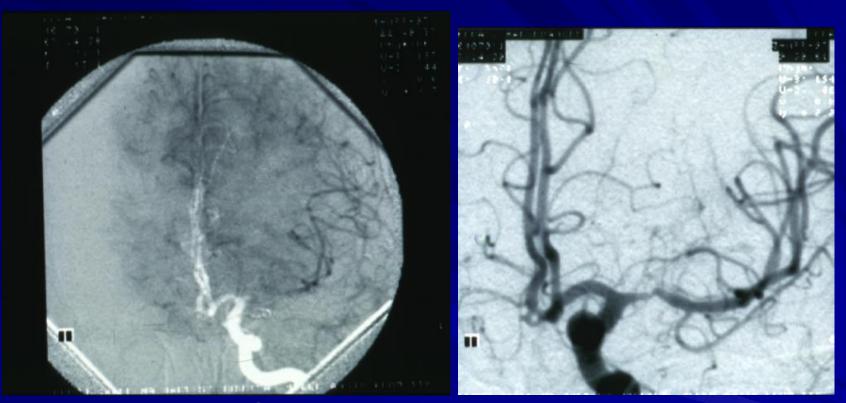
What will you do with the tight brain?

- Continuous use of ICP monitors.
- Optimal positioning.
- Permissive hyperventilation.
- I.V. narcotics/sedatives/tranquilizers.
- Osmodiuretics.
- Spinal fluid drainage, if necessary.
- Surgical decompression.
- Keep airway patent/unobstructed O₂!!!

"The brain softens before the lungs stiffen".

Methods of Cerebral Protection A. Improve O₂ Supply (Vascular) – **1. Improve Rheology –** a. Viscosity – hemodilution, antiaggregation, ¹deformability (RBCs). **b.** Anticoagulation & Anti-thrombosis 2. Flow Enhancement – a. Vasodilators - Nimodipine **b.** Controlled hypertension c. Anti-vasospasmodic agents - Ca⁺⁺ blockers, magnesium, etc. **3.** \uparrow O₂ delivery – Fluosol, RBC-Hb ghost cells, EPO, Hyperbaric O₂, etc.

Methods of Cerebral Protection


- B. <u>Metabolic Demands (Neuronal)</u>
 - 1. Synaptic Depression Local anesthetics.
 - 2. Metabolic Suppression Barbiturates, propofol, general anesthetics, hypothermia, etc.
- C. <u>Membrane Protection</u>
 - 1. Ionic & Membrane Stabilization Steroids, local anesthetics, etc.
 - Antioxidation/Free Radical Scavenging

 NMDA antagonists (N₂O, ketamine, dextromethorphan, MK-801), 60% xenon & remacemide.

Neuroprotection – Na⁺ Channel Blockers Block ischemic depolarization (penumbra). Retard voltage dependent Na⁺ intracellular accumulation. Slow glutamate-induced Na⁺ & **Ca++ during reperfusion.** Prevent post-anoxic repetitive neuronal firing (post-hypoxic seizures.

Neuroprotection – Ca⁺⁺ Channel Blockers Hydrophilic – cannot penetrate BBB! Heterogenous group – multiple sites of action. Problems with posology – What dose?? Possible direct effects of the drug. Other pharmacologic effects – antiserotinergic, NMDA antagonist, membrane stabilization, etc. Can open other pores or channels!.

Controlled Hypertension to Reverse Developing Embolic Injury

MCA occlusion @ angiographyHemiparesis subsides hemiparesis develops systolic 160 mm Hg systolic 120 mm Hg leptomeningeal collateral perfusion

Courtesy of Dixon Woodbury MD

Hypothermia and Neuroprotection Brain O₂ sat 90 **17 min arrest** 12° 70 fatal CV collapse 50 **3rd attempt to 37°** wean from bypass 30 -10 -31 41 11 21

010810ae

Beneficial Effects - Hypothemia

- Release of glutamine, glycine & dopamine.
- Recovery of ubiquitin synthesis.
- Inhibition of protein kinase C.
- Free radical-triggered lipid peroxidation.
- Metabolic rate & oxygen consumption.
- Primary synergists of ischemic metabolic cascade.
- Apoptosis.

Adversed Effects - Hypothermia Cardiac irritability (VF). Airway resistance. Immuned responses (infections). Coagulopathy & platelet dysfunction. Shift of O₂ dissociation curve. Altered membrane permeability. **Acidosis & glucose intolerance.** Shivering & $\uparrow O_2$ consumption.

Methods of Cerebral Protection D. <u>Miscellaneous</u> –

- **1. Perioperative neuromonitoring.**
- 2. Stents, shunts, filters & flow modifications with cerebral protection in carotid surgery.
 - 3. Synaptic stimulation.
 - 4. Alkaloids & other
 - pharmacological agents.
 - 5. Cerebral preconditioning -Sevoflurane, xenon, EPO, previous TIA, etc.

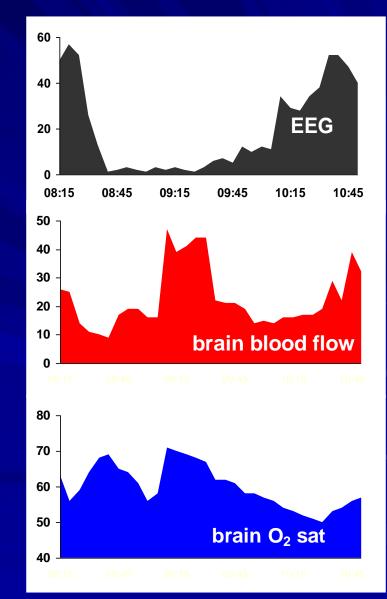
Cerebral Preconditioning Stimulates proteins of repair. Neuronal excitotoxicity. Inflammation & the inflammatory cascade. Inhibits neuronal apoptosis. Stimulation of neuro- & angiogenesis.

The perioperative brain injuries were caused by hypoperfusion, dysoxygenation, and embolization (fat, air, microaggregates, etc.)

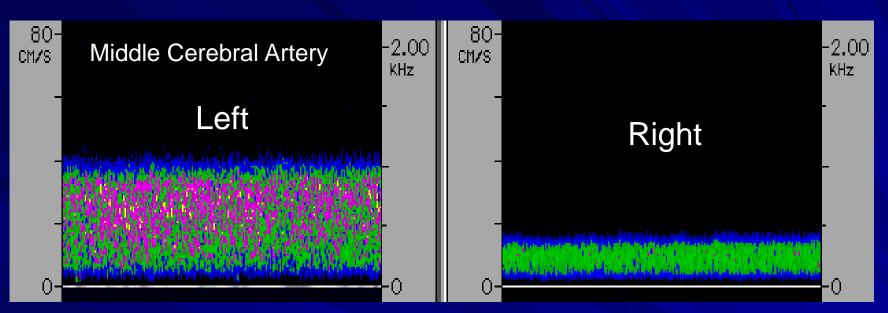
Small Capillary and Arteriolar Dilatation (SCAD)

emulsified fat aluminum silicate coating 30%/hr CABG; 145%/hr valve

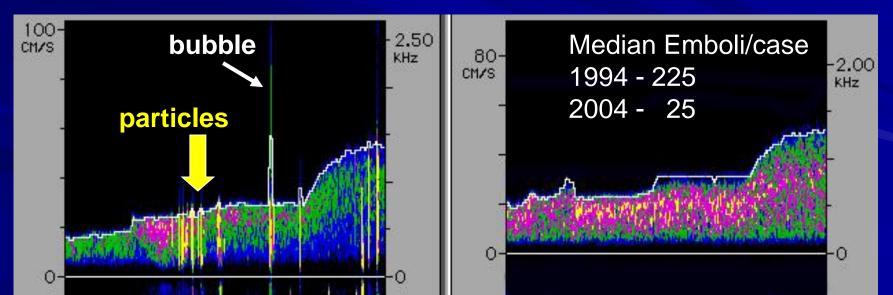
20 µm


Brown WR et al. Stroke 2000;31(3):707

Multi-modality Neuromonitoring


Synaptic Function EEG

Large Cerebral Vessel Perfusion transcranial Doppler (TCD) Small Cerebral Vessel Oxygenation near-infrared spectroscopy (NIRS)



TCD Identifies Brain Blood Flow Abnormalities

and the Presence of Microemboli

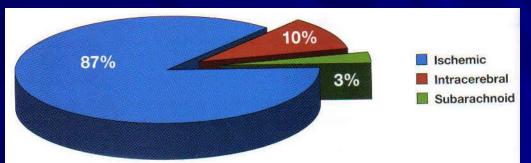
What is Known About Brain **Resistance to Hypoxia?** Neonatal/perinatal brain is more resistant to hypoxia/ischemia but more vulnerable. Recovery of metabolic/electrical activity after I hr. of global ischemia (in vivo). Functional recovery after 2-3 hrs. of focal ischemia *(in vivo)*. Hypoxia of 5 min. does not necessarily cause irreversible neuronal damage. Drugs / physiologic manipulations can modify the extend of damage & recovery. The success of resuscitation is time dependent!! Very few neurobehavioral/outcome studies.

Cerebral Protection/Resuscitation – <u>State of the Art</u>

- Airway maintenance/patency & mechanical ventilation Normocarbia (Class 1).
- Prevention of seizures/convulsions (<u>Class</u> <u>1</u>).
- Prevention & control of ¹I.C.P. & cerebral edema (<u>Class 1</u>).
- Support & maintain hemodynamic parameters (Class 1).
- Sustained continuous mild to moderate hypothermia (32-34 °C) & gradual rewarming (8 hrs.) – Global ischemia & TBI (Traumatic Brain Injury) - (Class 2a).
- Osmotic diuretics for *(Class 2a)* & ICP monitoring (Class 2a).

Cerebral Resuscitation/Protection – <u>State of the Art</u>

 Glycemic control (Euglycemia) – <u>Class 2a</u>.
 Use of neuromonitoring modalities improve anticipation & prediction of insults – BIS, Transcranial Doppler, Cerebral oximetry (<u>Class 2a</u>).


- Metabolic depression & synaptic suppression – barbiturates, propofol, anesthetics, etc. (<u>Class 2b</u>).
- Other supportive therapies –

- Control of sepsis & infections (Class 1).

- Control of acid/base, fluid & electrolytes abnormalities (Class 1).

 Prevention of other complications – Stress ulcers, diabetes insipidus, etc. (<u>Class 1</u>)

Cerebral Resuscitation/Protection – State of the Art

Chain of Survival – <u>Stroke</u> – 8 "<u>D</u>'s" (Class 2a) <u>D</u>etection, <u>D</u>ispatch, <u>D</u>elivery, <u>D</u>oor, <u>D</u>ata, <u>D</u>ecision, <u>D</u>rugs & <u>D</u>isposition.

<u>Critical</u> Time Limits – Cincinnati Prehospital Stroke Scale -

- General Assessment 10 min.
- Neurologic Assessment 25 min.
- Acquisition of CT Scan 25 min.
- Head CT Scan Interpretation 45 min.
- Fibrinolytic Therapy IV rTPA 60 min. ED arrival or 3 hrs. from onset of symptoms.
- Door-to-Admission time of 3 hours or up to 4.5 hrs. (Stroke Unit).

 Most Useful Initiatives
 Thrombolytic agents – Alteplase IV r-tPA 3 hrs. or up to 4.5 hrs of having a stroke (Class 1) & the Standard of Care.

- Endovascular Therapy with a stent retriever if it meets the following criteria (Class 1, Level of Evidence A):
 - Pre-stroke mRS score 0 to 1.
 - Acute IS receiving IV tPA within 4.5 hrs. of onset of symptoms.
 - Occlusion of the ICA or proximal MCA(M1).
 - Age is > or = 18 years old.
 - NIHSS score of > or = 6.
 - Rx can be initiated (groin puncture) w/in 6 hrs. of onset of symptoms.

Newer Initiatives

Statins & Antiplatelet Therapy – Simvastatin & clopidogrel -↑Endothelial NO, anti-inflammatory, ↓ oxidative stress & plaque stabilization.

Magnesium (16mmol over 15 min., then 65 mmol for 24 hrs. within 6-12 hrs. of stroke) – Smooth blood vessels relaxation - ↑ Cerebral circulation.
 Glucocorticoids (Class 3) – Very poor outcome studies.

Newer Initiatives

Cerebral Preconditioning – Stimulates protein repair, ↓ neuronal excitotoxicity, ↓ inflammation & the cascade,↓ neuronal apoptosis & stimulate neuro- & angiogenesis.

In carotid artery surgery, use of embolus blockers, stents & flow dynamics modifications – <u>Class 2b</u>.
 Improved RBC rheology/O₂ delivery –

Hyperbaric oxygenation, fluosol, EPO, etc. (<u>Class Int</u>.)

Suggested Reading List Clarkson AN. Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci. 80:1157-1175, 2007.

- Fanelli F, et al. Techniques in cerebral protection. Europ J Rad. 60: 26-36, 2006.
- Fukuda S, Warner DS. Cerebral protection. Brit J Anaesth. 99:10-17, 2007.
- Gifford RG, Jaffe RA. Advances in understanding protection from cerebral ischemia. Curr Op Anaesth. 15:495-500, 2002.
- Grogan K, et al. Brain protection in cardiac surgery. Anaesth Clin. 26:521-538, 2008.
 Jamsid A, Dar AQ. Resuscitation: Overview of the recommended guidelines. Indian J Anaesth. 49;96-104, 2005.

Suggested Reading List Jiang JY, Yang XF. Current status of cerebral protection in mild to moderate hypothermia after traumatic brain injury (TBI). Curr Op Crit Care. 13: 153-155, 2007. McDonald S. Is there any evidence that cerebral protection is beneficial? J Cardiovasc Surg. 47:127-136, 2006. Popp E, Bottiger BW. Cerebral resuscitation: State of the art, experimental approaches & clinical perspectives. Neurol Clin. 24;73-87, 2006. Schurr A, Rigor BM (ed). Cerebral Ischemia & Resuscitation. CRC Press, Boca Raton, FL, pp. 1-442, 1990. Thal SC, et al. New cerebral protection strategies. Curr Op Anaesth. 18: 490-495, 2005.